
Informatica Economică vol. 16, no. 4/2012  105 

 

Software Architecture Coupling Metric for Assessing Operational Respon-
siveness of Trading Systems 

 
Claudiu VINŢE 

Bucharest University of Economic Studies, Bucharest, Romania 
claudiu.vinte@ie.ase.ro  

 
The empirical observation that motivates our research relies on the difficulty to assess the perfor-
mance of a trading architecture beyond a few synthetic indicators like response time, system latency, 
availability or volume capacity. Trading systems involve complex software architectures of distributed 
resources. However, in the context of a large brokerage firm, which offers a global coverage from 
both, market and client perspectives, the term distributed gains a critical significance indeed. Offering 
a low latency ordering system by nowadays standards is relatively easily achievable, but integrating it 
in a flexible manner within the broader information system architecture of a broker/dealer requires 
operational aspects to be factored in. We propose a metric for measuring the coupling level within 
software architecture, and employ it to identify architectural designs that can offer a higher level of 
operational responsiveness, which ultimately would raise the overall real-world performance of a 
trading system. 
Keywords: Software Architectures, Quality and Coupling Metrics, Trading Systems, Operational Re-
sponsiveness, Service-Oriented Architecture (SOA), Message-Oriented Middleware (MOM), Cloud 
Services 
 

Introduction 
Over the past two decades, the electronic 

trading systems have transformed fundamentally 
the way capital markets work. From the perspec-
tive of a broker/dealer institution, that offers di-
rect market access globally to a variety of stock 
exchanges, and over-the-counter markets (OTC), 
their generically called trading system have been 
in a continuous race. It is a tough competition to 
respond exceptionally quick to the investors’ 
needs or, even better, to anticipate them, and to 
meet, equally agile, the intrinsic exigencies re-
quired by the ever-evolving financial market 
place. Trading architectures are a critical capabil-
ity in capital markets. The keys to achieving high 
performance in trading are to have clear objec-
tives of what the trader or the investor want to 
accomplish on a trading desk, and work upon an 
integrated design before selecting the underlying 
technology. 
Ideally, a broker/dealer would need only one 
platform for order and execution management. 
However, reality is more complicated than that, 
and it depends of multitudes of factors: 
 how broker/dealer firm is organized [1]; 
 where in the process the trading decision 

starts - with the portfolio managers or on the 
trading desk; 

 which asset classes are traded, and in which 
region of the world they are executed; 

 what kind of clients (investors) are targeted 
(institutional, wealthy individual, individual, 
all), and the volumes foreseen to be handled. 

One-size-fits-all platforms may provide econo-
mies of scale, but that does not make them neces-
sarily scalable, and they may also miss out on the 
subtleties needed to execute at the best price in 
local markets [2]. 
Normally, in-house traders need order manage-
ment systems that support their investment strat-
egies, capable of routing orders to traders with 
the right level of specificity, but having multiple 
platforms for handling different flows drive up 
technology costs. Ultimately, there has to be 
reached a balance between the number of plat-
forms that enable efficiency, and the cost to sup-
port and maintain those platforms. 
In general business terms, operational respon-
siveness is the ability of business processes and 
systems to respond to changing conditions and 
customer interactions as they occur, enabling 
business leaders to capitalize on opportunities, 
drive greater efficiencies, and reduce risk [3]. 
When it comes to trading architectures, tradition-
ally the focus has been on operational reliability. 
That implies powerful, secure, user-friendly 
software architectures and easy access. It also 
means having failure-tolerant systems, backup 
systems, and efficient implementation of system 
upgrades (releases) [2].  
A set of requirements must be specified to guar-
antee the desired level of quality for the software 

1 



106    Informatica Economică vol. 16, no. 4/2012 

 

architecture on which a trading system is built. In 
practice, the technical requirements are stated in 
the service-level requirements of an exchange. 
These include: 
a) Integrity – security is necessary to maintain 

data integrity. Huge projects and invest-
ments are made in this area so that en ex-
change can offer the highest degree of secu-
rity; 

b) Fault tolerance – trading architecture’s tol-
erance against failure has to be continually 
checked (e.g. process fail-over, recovery 
procedures); 

c) Disaster recovery – facilities must be put in 
place and exchange teams must be trained to 
react quickly and flexibly. There must there-
fore periodically exercise recovery proce-
dures; 

d) Recoverability – this means data integrity 
(storability) for system data and messages; 

e) Availability – this measures the total time 
that a trading architecture implementation is 
operationally available for trading; normally, 
broker/dealer trading architectures must 
comply with rigors the operational availabil-
ity requirements imposed to electronic ex-
changes; for example, the electronic ex-
changes in Europe must be, and have been, 
available well over 99.998% of normal 
working hours per year; that is, they have 
been down less that 0.002% of the time, 
which translates into only a few minutes per 
year [2]; 

f) Volume capacity – this is given in terms of 
maximum number (a certain percent plus 
contingency) per day for trades, orders, 
quotes, and trade reports, along with maxi-
mum number of traded instruments (both 
liquid and illiquid); capacity requirements 
must reflect both average and peak load 
numbers for orders per unit of time, both ag-
gregate and per instrument traded; 

g) Scalability and functional expandability - of 
critical importance is the scalability of the 
aforementioned features within a reasonably 
short period of time; scalability is essential 
to support further volume growth; functional 
expandability refers to ability to add and in-
tegrate new functional components within 
the architecture; 

h) Response time – this is the order request re-
sponse time and message sequencing in se-
conds for average and peak broadcast time; 

i) Portability – in operation, the architecture 
modules need the ability to provide trans-

parency regarding hardware platform and 
operating system, physical location, access 
to resources and the way they may be relo-
cated; using standards where possible is al-
ways recommended; 

j) Maintainability – a simple software architec-
ture which is easy to maintained and at low 
cost is always desired; however, reduced 
complexity does not mean simplicity; 

k) Auditability – ability to meet the demands of 
regulatory authorities and other auditors. 

Additionally, there are overriding criteria regard-
ing the interaction with the clients (investors) of a 
broker/dealer, including equal treatment, trans-
parency, immediacy, and low cost. These criteria 
are interdependent. Each is a necessary but not a 
sufficient condition for market integrity. The dif-
ferent weightings given to these factors in an ev-
er-changing market environment are decisive for 
the success of a brokerage firm that is striving to 
attract, to maintain, and to enhance services to 
their clients at reasonable cost [4]. 
The empirical observation that motivates our re-
search relies on the difficulty to assess the per-
formance of a trading architecture beyond a few 
synthetic indicators like response time, architec-
ture expected latency, availability or volume ca-
pacity. 
Trading systems are complex architectures of dis-
tributed resources. However, in the context of a 
large brokerage firm, which offers a global cov-
erage from both, market and client perspectives, 
the term distributed gains a critical significance 
indeed.  
Offering a low latency ordering system by nowa-
days standards is relatively easily achievable, but 
integrating it in a flexible manner within the 
broader information system architecture of a bro-
ker/dealer requires operational aspects to be fac-
tored in. 
In this paper, we intend to identify the chief trad-
ing architecture models that have been, and are 
being used in the industry, and to analyze com-
paratively their strengths and weaknesses. 
In order to support our trading architecture analy-
sis, we propose a metric for measuring the cou-
pling level within software architecture, and em-
ploy it to identify architectural designs that can 
offer a higher level of operational responsiveness, 
which ultimately would raise the overall real-
world performance of a trading system. 
2 Trading Architecture Approaches and Their 
Characteristics 
Traditionally, the components of a trading system 
architecture have mimicked the corresponding 



Informatica Economică vol. 16, no. 4/2012  107 

 

departments that function within a broker/dealer 
firm: 
 front office - responsible with the order 

placement and routing (separate flows for 
client, and proprietary orders), order man-
agement, and exchange execution capture;   

 middle office - the place where the exchange 
executions are processed, and the actual 
trades a generated; 

 back office - responsible for client confirma-
tions and where the settlement date is pre-
pared for being sent to clearing agencies, 
trust bank and other third parties. 

The information technology correspondents are 
illustrated in Figure 1 above: 

a) trading applications, GUI based, and their 
associated programming interfaces; 

b) order management system (OMS); 
c) dedicated lines to various securities ex-

changes; 
d) trade management system (TMS); 
e) client confirmation system (CCS); 
f) settlement/clearing system (SCS). 
Depending of the approach, the execution man-
agement system (EMS - responsible for exchange 
execution capture chiefly) may be part of OMS 
or have a distinct representation.  
In addition, there are normally necessary modules 
for market data feeds and their dissemination to 
the clients and trading desks (prices, companies 
and other financial instruments updates etc.).

 
 

Client 1 

Order Management System  
(OMS) 

Client 2 Client n 

Line 1 Line 2 Line n 

. . . 

. . . 

Client Interfaces 

Exchange Interfaces 

Trade Management System  
(TMS) 

Client Confirmations System 
(CSS) 

Settlement/Clearing System 
(SCS) 

Broker / Dealer Trading System  

Investitors 
(financial institutions, banks, hedge funds, individuals etc.) 

Securities Exchanges 

Settlement 
Clearing  
Agency 

 
Fig. 1. The main functional components of a dealer/broker trading system 

 
However, these modules dare not part of main 
trading flow, and we shall not consider them for 
the purpose of our analysis. Moreover, in many 
cases real-time market data is provided on a con-
tract basis directly by exchanges (see NASDAQ 
OMX Global Data Products, for instance [5]) or 
by specialized firms with global market coverage, 
like Reuters [6].  
It is worth pointing out that, in relation to the ex-
ternal information systems that a brokerage firm 
needs to interconnect with (remote clients, ex-
changes, trust banks, clearing agencies etc.) [7], 

the technology that is to be employed may differ 
considerably, depending on factors like: 
 security measures required for privacy pro-

tection of the sensitive data; 
 data volume, and frequency of message ex-

changes; 
 data transfer speed necessary for orders to 

reach the exchange, and the response time 
for acknowledgments; 

 available industry standards and common 
practices among market participants; 

 novelty and accuracy of the market data (see 
aspects related to price discovery); 



108    Informatica Economică vol. 16, no. 4/2012 

 

We will focus our analysis on the architectural 
solutions that are to implement the main func-
tional modules presented above into an integrated 
distributed trading system [8]. 
The designs that we consider are the followings: 
a) tightly coupled architecture with point-to-

point synchronous communication model 
between components; 

b) loosely coupled architecture based on an or-
der request broker (ORB); 

c) service-oriented architecture build upon a 
message oriented middleware (MOM). 

The tightly coupled software architecture, as il-
lustrated in Figure 2, implies that each compo-
nent of the architecture is directly interfaced, and 
connected to the component that needs to ex-
change data with [9].  

 
 
 

Trading GUI 

OMS 

Exchange Line 

TMS 

CCS 

SCS 

Trading GUI Trading GUI 

Exchange Line Exchange Line 

 
Fig. 2. Tightly coupled trading architecture, based on P2P communication model 

 
This approach is characterized by following as-
pects: 
 fast and straightforward data processing 

flows; 
 the inter-process communication relies on 

point-to-point model (P2P), using TCP/IP 
sockets; 

 employing TCP/IP connections between ar-
chitectural modules, the communication 
mechanism is one of a synchronous nature, 
which implies blocking of the requester pro-
cessing flow until the reply is received from 
the service provider; difficult vertical inte-
gration of architectural components [10]; 

 potentially, specific, dedicated application-
programming interfaces between each pair 
of distinct modules that make up the soft-
ware architecture; 

 tightly coupled modules, due to the intimate 
manner they are interconnected; 

 scalability, functional expandability and 
maintainability are difficult and costly to 
achieve; 

 failure of a single component may affect 
multiple processing flows or even bring to a 
halt the entire trading system; 

 complex and potentially unreliable recovery 
procedures. 

The key architectural feature of a trading archi-
tecture designed upon an order request broker 
(ORB) is the presence of a dedicated communica-
tion component, a network daemon (ND) that fa-
cilitates data interchange among the architecture 
processing modules (Figure 3). 
An ORB based architectural model has the fol-
lowing characteristics: 
 the communication may rely on both TCP 

and UDP internet protocols, meaning that 
data may be exchanged between modules 
using broadcasting or multicasting mecha-
nisms, along with point-to-point connections 
[10];  

 loosely coupled modules of the software ar-
chitecture; they are not directly intercon-
nected, allowing for dynamic scaling of the 
system, depending on the actual load, and 
processing capacity of each component; 

 the communication layer is separated from 
the business logic of the applications, and 
isolated in the network daemon (ND); any 
changes regarding communication are done 
in a single place [11]; 

 



Informatica Economică vol. 16, no. 4/2012  109 

 

 
Trading GUI 

OMS Logical network created by an  
ORB (network daemon - ND) 

Exchange Line 

ND 

ND 

Trading GUI 

ND 

Trading GUI 

ND 

ND 
OMS 

ND 

Exchange Line 

ND 

CCS 

ND TMS 

TMS 

SCS 

ND 

ND 

ND 

Exchange Line 

ND 

EMS 

ND 

CCS 

ND 

 
Fig. 3. Loosely coupled trading architecture built upon an ORB 

 
 the applications are to subscribe to a set of 

distributed and shared objects they are inter-
ested in, and the network daemon ORB pro-
vides the delivery mechanism for objects 
from the application which produce (pub-
lish) them to the consumer; 

 the network daemon deployment, and the 
management of ND versions used on differ-
ent hardware can be problematic and poten-
tially fault-prone; 

  the software architecture is generally flexi-
ble and operationally responsive, but there is 
one major disadvantage: the distributed and 
shared objects handled by the ND are not 

normally persisted; there are mechanisms in 
place to retransmit lost packets at request, 
but a hardware component failure may gen-
erate complicated recovery procedures or 
even definitive data lost [12]; 

 the usage of UDP sockets may restrict to 
logical network area of the architecture to a 
local network (LAN), due to presence of 
switches and routers, which makes this ar-
chitecture not immediately suitable for glob-
ally distributes operations [13]. 

The service-oriented architecture (SOA) build 
upon a message-oriented middleware (MOM) has 
the following characteristics (Figure 4): 

 
 

Trading GUI 

Message Oriented Middleware (MOM) 

Exchange Line 

Trading GUI Trading GUI 

Exchange Line 

CCS 

Exchange Line EMS 

CCS OMS OMS 

TMS TMS SCS 
 

Fig. 4 Service-oriented trading architecture based on a MOM 
 
 each component of the architecture exposes 

its functionality, as a service provider, to the 
other components [14]; 

 requests for services and replies are flowed 
through a message-oriented middleware 
(MOM). A message-oriented middleware 
makes use of a message provider (message 
broker) to mediate the messaging operations; 
in this parading, the elements of a MOM-
based architecture are the client applications, 
the messages, and the message provider; un-
der the broad umbrella of client applications, 
can be in fact identified certain applications 
that functionally play the role of a client, and 
others that have the functional role of a 
server; all the architecture modules are per-

ceived as clients of the MOM message bro-
ker [15]; within a MOM-based system, a cli-
ent makes an API call by sending a message 
to a destination managed by the message 
provider; the call triggers message provider 
services to route and deliver the message to 
the consumer; once the message was sent, 
the producer can continue the processing 
flow, relying on the fact that the message 
provider retains (persist) the message until a 
consumer component is available to process 
it; 

 architecture with loosely coupled compo-
nents; the implementation of such a software 
architecture can continue to function relia-
bly, without downtime, even when individu-



110    Informatica Economică vol. 16, no. 4/2012 

 

al components or connections fail; the client 
applications are consequently effectively re-
lieved of every communication issue, except 
that of sending, receiving and processing 
messages [16]; 

 distinct messaging patterns, or domains such 
as point-to-point messaging and pub-
lish/subscribe messaging; 

 facilities for synchronous and asynchronous 
message receipt; 

 support for reliable message delivery; mes-
sages can be persisted and the delivery guar-
anteed by MOM design and implementation; 

 common and generic application-
programming interface (API) regarding the 
message exchange within the software archi-
tecture, see Java Message Service (JMS) for 
instance which provides support for com-
mon message formats such as text, byte and 
stream [17]; 

 unlike an ORB based architecture, the reli-
ance on a MOM provides no restrictions re-
garding remote accessibility of services, it is 
a truly wide area network (WAN) solution; 

 multiple, and regionally distributed message 
providers can be interconnected in clusters 
of message brokers, offering natural support 
for cloud computing. 

 
3 Proposed Model for Software Architecture 
Coupling Metric 
The ability of software architecture to respond to 
ever-changing operational conditions is an attrib-
ute that summons multiple quality characteristics, 
perceived by the user of the software solution, 
and that have to be foreseen and taken into ac-
count by the designer. 
Each software architecture model that we have 
presented above has its particular strengths and 
weaknesses. 
In practice, the most important impact on an ar-
chitectural model operational responsiveness is 
given by the manner in which modules are inter-
connected with each other, and the business re-
quirements for data flows between them. 
The way software components are coupled within 
an architectural model determines how the design 
is implemented, maintained, expanded etc. 
For example, the P2P model may offer direct and 
fast connections but, in operation, the flexibility 
to scale it dynamically is very limited. Moreover, 
extending such a model, by adding a new func-
tional component, usually requires a new applica-
tion-programming interface (API) to accompany 

it, in order to facilitate the integration within a 
given architecture. 
There have been proposed software metrics for 
measuring the complexity of a software function 
based on the information flows that come in and 
go out of it. Henry and Kafura proposed software 
structure metrics based on information flow in 
1981 [18]. The metrics that they introduced 
measure complexity as a function of fan-in and 
fan-out: 
 fan-in of a procedure is define as the number 

of local flows into that procedure plus the 
number of data structures from which that 
procedure retrieves information; 

 fan-out is defined as the number of local 
flows out of that procedure plus the number 
of data structures that the procedure updates.  

Such an approach targets the measure of com-
plexity at software function level. At software ar-
chitecture level, there is no utility in going to the 
details of the flows between modules, but rather 
to take into account the nature of coupling, and 
the number of application-programming inter-
faces that are to be employed. 
For evaluating the coupling level of a software 
architecture, and, consequently, building an ob-
jective basis for assessing the operational respon-
siveness of a trading system implemented upon 
it, we propose a model to measure the architec-
tural aspects related to coupling. 
We define the following elements for construct-
ing a metric for evaluating software architecture 
level of coupling: 
 i – number of distinct application-

programming interfaces (API) required by 
software architecture; 

 m – number of distinct modules that consti-
tute software architecture; 

 I – overall number of API instances em-
ployed by software architecture; 

 M – overall number of modules that consti-
tute software architecture; 

Making a parallel with Halstead’s model for as-
sessing the complexity of a software program 
[19], and identifying interfaces as operators and 
the modules that make up the architecture as op-
erands, we define the vocabulary (lexicon) of a 
software architecture as being: 
ܮܣ ൌ ݅  	݉    (1) 
Going further, the size of software architecture is 
given by the following relation: 
ܵܣ ൌ ܫ   (2)    ܯ	



Informatica Economică vol. 16, no. 4/2012  111 

 

There has to be noted that for distributed soft-
ware architecture we need to impose the follow-
ing conditions: 
݅ 	 1, ݇ ൌ 	1,݉തതതതതത; 	݅	  1; 	ܫ	  1; 	݉	 
2; 	ܯ	  2    (3) 
Then, the following relation gives the calculated 
architecture dimension: 
෪ܵܣ ൌ 	݅	 logଶ ݅ 	݉	logଶ ݉   
    (4) 
Volume of software architecture is calculated us-
ing the following relation: 
ܸܣ ൌ 	ܵܣ ൈ	 logଶ ܮܣ ൌ ሺܫ  ൈ	ሻܯ
	logଶሺ݅  	݉ሻ     (5) 
Therefore, the difficulty to implement the soft-
ware architecture is estimated by: 

ܦܣ ൌ


ଶ
	ൈ 	

ெ


     

   (6) 
Having stated the above elements, the effort to 
build the software architecture is given 
by the following relation: 
ܧܣ ൌ 	ܸܣ ൈ     ܦܣ
    (7) 
In addition to the above measures, we introduce 
the following metric for computing the average 
level of coupling for a software architecture, as 
being: 

തതതതതܮܥܣ ൌ 	
∑ ሾೖ	 	୪୭మሺଵା	ೖሻሿ

ೖసభ

୪୭మெ
    

   (8) 
where: 
 ik – number of distinct application-

programming interfaces (API) that module k 
needs for being integrated within software 
architecture; 

 ck – number of modules of type k employed 
by software architecture 

-തതതതത has the minimum value when there is conܮܥܣ
sidered a software architecture with two distinct 
modules, and one application-programming in-

terface employed for interconnecting them, see 
the above condition (3): 

തതതതതܮܥܣ ൌ 	
∑ ሾ݅	 	 logଶሺ1 	ܿሻሿ
ଶ
ୀଵ

logଶ 2

ൌ 	
1	 logଶሺ1  1ሻ 	 1	 logଶሺ1  1ሻ

logଶ 2
ൌ 2 

This minimum value of the average level of cou-
pling for software architecture, gives a good ap-
proximation for an empirical observation: that a 
software architecture needs at least one applica-
tion-programming interface to glue its modules, 
and one API to communicate with the outside 
world. 
We will compute these metrics for each of the 
trading architectures presented above, and inter-
pret the results from the operational responsive-
ness standpoint. 
 
4 Computational Results Using the Proposed 
Metrics 
We begin the computation of the proposed met-
rics considering the minimal configuration for a 
trading architecture: 6 modules, and a single in-
stance per module (see Fig. 1). 
Table 1 synthesized the number of distinct appli-
cation-programming interfaces (API) per module 
of the software architecture. These numbers rep-
resent the ik values required for computing the 
average level of coupling, ܮܥܣതതതതത.  
In Table 2 are presented the proposed metric val-
ues for the minimal (reference) configuration of a 
trading architecture. For ORB and MOM based 
architectures, beyond the difference previously 
identified, we consider that the number of distinct 
interfaces required is the same.  
The average coupling level for P2P based archi-
tecture reflects the tightly couple nature of this 
model. 

 
Table 1. Number of distinct application-programming interfaces per module 

No 
Distinct module of software architec-

ture 
P2P based ORB based MOM based 

1. Trading GUI 2 1 1 
2. Exchange line 2 2 2 
3. OMS – Order Management System 3 1 1 
4. TMS – Trade Management System 3 1 1 
5. CCS – Client Confirmation System 2 1 1 
6. SCS – Settlement/Clearing System 2 2 2 
7. EMS – Execution Management System 3 1 1 

 
  



112    Informatica Economică vol. 16, no. 4/2012 

 

Table 2. The reference configuration with only 6 distinct modules  

No 
Software architecture 

characteristics  
P2P based ORB based MOM based 

1. i – number of distinct APIs 8 3 3 
2. m – number if distinct modules 6 6 6 
3. I – overall number of APIs 8 3 3 
4. M – overall number of modules 6 6 6 
5. AL – vocabulary 14 9 9 
6. AS – size 14 9 9 
෪ࡿ .7  – calculated size 39.5098 20.265 20.365 
8. AV – volume 53.3036 28.5291 28.5291 
9. AD – difficulty 4 1.5 1.5 
10. AE – effort 213.2144 42.7937 42.7937 
 തതതതതത – average coupling level 5.4159 3.0948 3.0948ࡸ .11

 
Then, we increase the overall number of compo-
nents, but preserve the number of distinct ones. 
With other words, keep the same vocabulary of 
the software architecture, but increase its size 
from 6 to 35, as follows: 
 20 Trading GUI 
 4 Order management systems 

 4 Exchange lines 
 4 Trade management systems 
 2 Client confirmation systems 
 1 Settlement/Clearing system 

The results are showed in Table 3 below. 

 
Table 3. Increased only the overall number of architectural modules from 6 to 35 

No 
Software architecture 

characteristics  
P2P based ORB based MOM based 

1. i – number of distinct APIs 8 3 3 
2. m – number if distinct modules 6 6 6 
3. I – overall number of APIs 86 40 40 
4. M – overall number of modules 35 35 35 
5. AL – vocabulary 14 9 9 
6. AS – size 121 75 75 
෪ࡿ .7  – calculated size 39.51 20.27 20.37 
8. AV – volume 447.75 237.74 237.74 
9. AD – difficulty 23.33 8.75 8.75 
10. AE – effort 10447.46 2080.26 2080.26 
 തതതതതത – average coupling level 6.3421 3.3660 3.3660ࡸ .11

 
If the number of distinct architectural modules is 
increased from 6 to 7, by including an Execution 
Management System (EMS) in the software ar-
chitecture, the number of distinct interfaces re-
quired changes accordingly (see the last row of 
Table 3, containing the underlined EMS module). 
The corresponding metric values are showed in 
Table 4. It is worth pointing out that by adding a 
new component the average coupling level of 
P2P based architecture increased with about 12%, 
while for ORB and MOM based architectures the 

value of ܮܥܣതതതതത increased only with 3.6%. In addi-
tion, if increasing the overall number of modules 
made the effort required to implement the P2P 
based architecture 5 times greater than the effort 
to implement an ORB or MOM based one, then 
only adding a new component to the architecture 
raised the same effort difference to about 7 times. 
This empirical data test supports the higher level 
of operational responsiveness provided by loose-
ly coupled software architecture. 

 
  



Informatica Economică vol. 16, no. 4/2012  113 

 

Table 4. Increased only the number of distinct modules from 6 to 7 

No 
Software architecture 

characteristics  
P2P based ORB based MOM based 

1. i – number of distinct APIs 10 3 3 
2. m – number if distinct modules 7 7 7 
3. I – overall number of APIs 10 3 3 
4. M – overall number of modules 7 7 7 
5. AL – vocabulary 17 10 10 
6. AS – size 17 10 10 
෪ࡿ .7  – calculated size 52.87 24.41 24.41 
8. AV – volume 69.49 33.22 33.22 
9. AD – difficulty 5 1.5 1.5
10. AE – effort 347.44 49.83 49.83 
 തതതതതത – average coupling level 6.0556 3.2059 3.2059ࡸ .11

 
Increased both, the number of distinct modules 
from 6 to 7, and the overall number of modules, 
from 6 to 39, as follows: 
 20 Trading GUI 
 4 Order management systems 
 4 Execution management systems 
 4 Exchange lines 
 4 Trade management systems 

 2 Client confirmation systems 
 1 Settlement/Clearing system 
The proposed metric values are presented in Ta-
ble 5. Comparing with the reference configura-
tion, the average coupling level of P2P based ar-
chitecture increased with 38%, while for ORB 
and MOM based architectures the value of ܮܥܣതതതതത 
increased with about 20%. 

 
Table 5. Increased both the number of distinct modules and overall number of architectural modules 

No 
Software architecture 

characteristics  
P2P based ORB based MOM based 

1. i – number of distinct APIs 10 3 3 
2. m – number if distinct modules 7 7 7 
3. I – overall number of APIs 98 44 44 
4. M – overall number of modules 39 39 39 
5. AL – vocabulary 17 10 10
6. AS – size 137 83 83 
෪ࡿ .7  – calculated size 52.87 24.41 24.41 
8. AV – volume 559.99 275.72 275.72 
9. AD – difficulty 27.86 8.36 8.36 
10. AE – effort 15599.63 2304.20 2304.20 
 തതതതതത – average coupling level 7.4727 3.7059 3.7059ࡸ .11

 
5 Proposed Architectural Approaches for In-
creasing the Operational Responsiveness 
Taking into account that having more flexibility 
in responding to operational needs does not en-
tirely compensate for fast and direct data flow re-
quired by the ordering system, we have to ob-
serve that there is space for improving the overall 

performance of a trading architecture by combin-
ing the coupling model specific to each presented 
model. 
Figure 5 illustrates a trading architecture that re-
tains the P2P coupling model for the ordering 
flow, and combines it with a MOM based solu-
tion for the trade processing needs. 

 



114    Informatica Economică vol. 16, no. 4/2012 

 

 

Trading GUI 

Exchange Line 

Trading GUI Trading GUI 

Exchange Line 

CCS 

Exchange Line 

SCS 

CCS 

OMS 

OMS TMS 

TMS 
OMS 

 
 
 

Message 
Oriented 

Middleware 
(MOM) 

 
Fig. 5. Mixed architecture, P2P for order flow, MOM based for trade processing 

 
The messaging approach for middle office and 
back office systems provides the reliability, low 
maintenance cost, and flexibility to adapt to third 
party software architectures (client, trust banks, 
clearing institutions), while having the main fo-
cus on the order processing area of the architec-
ture. The messaging services do not necessarily 
have to be provides by a single message broker, 
but by a cluster of distributed message providers. 
There is indeed a logically centralized, physically 
distributed approach. The application developer 
does not need to care where the message broker 
is located and if there is only one message broker 
that handles messages from a given producer 
(source) to a given consumer (destination). 
On the other hand, for ordering can be identified 
and isolated specific flows based on asset classes, 
type of clients, location of the execution points 
etc. Ordering flow segregation, achieved by cre-

ating distinct processing channels for different 
clients, assets, and exchanges it is natural, desired 
from business perspective, and increases the op-
erational responsiveness through the usage of 
multiple instances of the same architectural mod-
ule [20]. Each ordering flow can be set up in a 
hot-stand-by configuration, with one primary and 
one secondary servers, failing over and falling 
back mechanisms and procedures. 
On the trade processing side, there can be easily 
plugged-in additional instances of a trade manag-
ing server, a client confirmation server when 
needed, along with ease for adding new modules 
all together, like an execution managing systems 
(EMS) or a database system (DBS), the latter re-
sponsible with the distribution of persisted data. 
Building clusters of message providers for specif-
ic global flows opens the route to cloud compu-
ting (Figure 6) [21]. 

 
 

 
Trade Processing Cloud 

Trading GUI 

Exchange Line 

Trading GUI Trading GUI 

Exchange Line 

CCS 

Exchange Line 

SCS 

CCS 

OMS 

OMS 

TMS TMS 

OMS 

Client Confirmation Cloud 

DBS 

EMS 

 
Fig. 6. Middle and back offices supported by services within cloud infrastructures 

 
Table 6 specifies the number of distinct interfaces 
required by each module within the proposed 
mixed software architectures: P2P combined with 

MOM, and P2P with trade processing services in 
cloud computing configuration. 

 



Informatica Economică vol. 16, no. 4/2012  115 

 

Table 6. Number of distinct interfaces per module for the mixed architectures 

No 
Distinct module of software architec-

ture 
P2P  and MOM P2P and Cloud 

1. Trading GUI 2 2 
2. Exchange line 2 2 
3. OMS – Order Management System 3 3 
4. TMS – Trade Management System 1 1 
5. CCS – Client Confirmation System 1 2 
6. SCS – Settlement/Clearing System 2 2 

 
Computing the proposed coupling metrics for the 
mixed software architectures we obtained the fol-
lowing results, showed in Table 7. 
 

Table 7. Coupling metric values for the mixed architectures 

No 
Software architecture 

characteristics 
P2P and MOM P2P and Cloud 

1. i – number of distinct APIs 5 6 
2. m – number if distinct modules 6 6 
3. I – overall number of APIs 5 6 
4. M – overall number of modules 6 6 
5. AL – vocabulary 11 12 
6. AS – size 11 12 
෪ࡿ .7  – calculated size 27.12 31.02 
8. AV – volume 38.05 43.02 
9. AD – difficulty 2.5 3 
10. AE – effort 95.13 129.06 
 തതതതതത – average coupling level 4.2553 4.6422ࡸ .11

 
As expected, the average level of coupling for 
these two mixed software architecture have in-
creased but, even in the case of multiple clouds to 
connect to, the effort for implement the architec-
ture is about half of the effort required by a pure 
P2P approach. 
 
7 Conclusions and Further Research 
The empirical observation that motivates our re-
search relies on the difficulty to assess the per-
formance of a trading architecture beyond a few 
synthetic indicators like response time, system la-
tency, availability or volume capacity. 
Trading systems are complex architectures of dis-
tributed resources. However, in the context of a 
large brokerage firm, which offers a global cov-
erage from both, market and client perspectives, 
the term “distributed” gains a critical significance 
indeed. Offering a low latency ordering system 
by nowadays standards is relatively easily 
achievable, but integrating it in a flexible manner 
within the broader information system architec-
ture of a broker/dealer requires operational as-
pects to be factored in. 

In this paper, we identified the chief trading ar-
chitecture models that have been used in the in-
dustry, and analyzed comparatively their 
strengths and weaknesses. 
In order to support our trading architecture analy-
sis, we proposed a metric for measuring the cou-
pling level within software architecture, and em-
ployed it to identify architectural designs that can 
offer a higher level of operational responsiveness. 
Our ongoing research aims to explore the proper-
ties of the coupling metrics model that we briefly 
introduced herein, and further refine its ability to 
characterize distributed software architectures. 
 
References 
[1] L. Harris, Trading and Exchanges, Oxford 

University Press, Oxford, 2003 
[2] A. R. Schwartz, R. Francioni, Equity market 

in Action (The Fundamentals of Liquidity,  
Market  Structure  & Trading), John Wiley & 
Sons, Inc., 2004 

[3] L. Fulton, “Operational Responsiveness”, 
Progress Software Corporation, white paper, 
2009, http://www.progress.com/en/ opera-



116    Informatica Economică vol. 16, no. 4/2012 

 

tional-responsiveness.html 
[4] McIntyre Hal (editor), “How the U.S. Securi-

ties Industry Works - Updated and Expanded 
in 2004”, The Summit Group Press, New 
York, 2004 

[5] NASDAQ OMX Global Data Products, 
http://www.nasdaqtrader.com/  

[6] Reuters Global Market Data, 
http://www.reuters.com/finance/global-
market-data 

[7] McIntyre Hal (editor), “Straight Through Pro-
cessing”, The Summit Group Publishing, 
Inc., New York, 2004 

[8] C. Vinţe, ”The Informatics of the Equity 
Markets - A Collaborative Approach”, In-
formatica Economica Journal, vol. 13, no. 2, 
2009. 

[9] A. S. Tanenbaum, M. van Steen, Distributed 
Systems - Principles and Paradigm, Vrije 
Universiteit Amsterdam, The Netherlands, 
Prentice Hall, New Jersey, 2002 

[10] W.R. Stevens, UNIX Network Program-
ming, Vol. 1, Networking APIs: Sockets and 
XTI, Second Edition, Prentice Hall, 1998 

[11] A. S. Tanenbaum, Computer Networks, 
Fourth Edition, Vrije Universiteit Amster-
dam, The Netherlands, Pearson Education 
Inc., Prentice Hall PTR,  New Jersey, 2003 

[12] C. Vinţe, “Aspecte ale Proiectării unui Order 
Request Broker (ORB) - Partea I”, Informati-
ca Economică Journal, Vol. V, No. 2 
(18)/2001, INFOREC, Bucharest, 2001 

[13] C. Vinţe, “Aspecte ale Proiectării unui Order 
Request Broker (ORB) - Partea a II-a”, In-
formatica Economică Journal, Vol. V, No. 3 

(19)/2001, INFOREC, Bucharest, 2001 
[14] Erl Thomas (with additional contributors), 

“SOA Design Patterns”, Prentice Hall by 
SOA Systems Inc., New Jersey, NY, 2009 

[15] C. Vinţe, ”Upon a Trading System 
Architecture based on OpenMQ 
Middleware”, Open Source Science Journal, 
Vol. 1, no. 1, 2009, 
http://www.opensourcejournal.ro/ 

[16] C. Vinţe, ”Upon a Message-Oriented Tra-
ding API”, Informatica Economica Journal, 
vol. 14, no. 1, 2010, 
http://www.revistaie.ase.ro/ 

[17] Richards Mark, Monson-Haefel Richard, 
Chappell A. David , “Java Message Service 
(Second Edition)”, O’Reilly Media Inc., Se-
bastopol, CA, 2009 

[18] S. Henry, D. Kafura, “Software Structure 
Metrics Based on Information Flow”, IEEE 
Transactions on Software Engineering Vol-
ume SE-7, Issue 5, Sept. 1981 Page(s): 510 – 
518 

[19] Halstead, Maurice H., “Elements of Soft-
ware Science”, Amsterdam: Elsevier North-
Holland, Inc., ISBN 0-444-00205-7, 1977 

[20] Suzanne Dence, Daniel Latimore, John 
White, “The trader is dead, long live the trad-
er! - A financial markets renaissance”, IBM 
Institute for Business Value, 2006, 
http://www-935.ibm.com/services 
/us/imc/pdf/ge510-6270-trader.pdf 

[21] M. Risca,  D. Malik, A. Kessler, “Trading 
Floor Architecture”, Cisco Systems, 2007, 
http://www.cisco.com/ web/strategy/ docs/ 
finance/TradingFlrArch110707.pdf

 
 

Claudiu VINŢE has over fifteen years of experience in the design and implementa-
tion of software for equity trading systems and automatic trade processing. In 2007 
Claudiu co-founded Opteamsys Solutions, a software provider in the field of securi-
ties trading technology and equity markets analysis tools. Previously, he was for 
over six years with Goldman Sachs in Tokyo, Japan, as Senior Analyst within the 
Trading Technology Department. Since 2009, Claudiu has joined the Department of 
Economic Informatics and Cybernetics as adjunct assistant professor. He has been 

coordinating the course upon The Informatics of the Equity Markets, and the seminars on Software 
Quality Management within the Master’s program in Economic Informatics. Claudiu graduated in 
1994 The Faculty of Cybernetics, Statistics and Economic Informatics, Department of Economic In-
formatics, within The Bucharest University of Economic Studies. He holds a PhD in Economic Cy-
bernetics and Statistics from The Bucharest University of Economic Studies. His domains of interest 
and research include combinatorial algorithms, reusable software design, middleware components, al-
gorithmic trading and web technologies for equity markets analysis.  
 


